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The problem of radiative heat transfer in a gas filled 
enclosure is of considerable interest. The grey-gas assump- 
tion commonly used can be in error for several reasons. 
The total absorptivity of a real gas generally does not 
follow the exponential absorption law. In addition there is 
difficulty in choosing the appropriate mean absorption CD. 
efficient for a specific case. If there are large temperature 
variations in the gas or between the gas and a wall, si@- 
ficant errors can occur because of the changing distribution 
of energy with wave length. A grey-gas assumption with 
total absorptivity taken equal to total emissivity in the gas, 
cannot account for these effects. Ignoring the variation of 
absorption d c i e n t  with temperature can also lead to 
considerable error. 

The problem of radiative transfer to real gases has been 
treated previously b Hottel and a h e n  ( I ) ,  who have 
presented a method L on separating a gas volume into 
finite isothermal elements and solving the resulting set of 
transfer equations. The real gas properties are approxi- 
mated by fitting a summation of exponential terms. 

Another treatment of the problem is given by Bevans 
and Dunkle (2). The band approximation is used for the 
properties, and finite isothermal elements are assumed. 
The solution is obtained by the network meuBod. 

Deissler (3) extended the dihsion approximation with 
jump boundary conditions for the case of real gases to a 
higher order but as in (1) and (2) ,  did not fully account 
for the effect of temperature on the gas properties. 

Some recent papers (4 ,  5 )  have applied the Monte 
Carlo method used previously in the fields of rarefied gas 
dynamics and neutron transport to heat radiation problems 
involving grey gases with temperature independent proper- 
ties. Monte Carlo is applied herein to a nonisothermal gas 
radiative transfer problem where the absorption coefficient 
is allowed to vary with both wave length and temperature. 
A comparison is made with the modified diffusion approxi- 
mation includin temperature effects on the absorption co- 
efficient, with t e  temperature dependent grey-gas solu- 
tion, with the temperature independent nongrey gas solu- 
tion, and with the transparent approximation. 

The procedure consists of following a bundle" of energy 
through a probable path until h a 1  absorption in the sys- 
tem. Enough such bundles are followed to give statistically 
meaningful results. 

ANALYSIS 

The radiant energy transfer and the temperature dis- 
tribution are found for a nongrey nonisothermal gas be- 
tween infinite parallel walls. Only the case of black walls 
will be treated, but extension to nongrey walls is straight- 
forward. The refractive index of the gas is assumed to be 

" These bundles cannot be cnnsidered photons since the energy Per 
bundle does not depend on wave length. They rather represent a V P  
01 h d l e  of paotonS at a given wave length such that all bundles have 
equal 

1. Two solutions are obtained, one for the walls at unequal 
temperatures and with no heat sources in the gas and the 
other for both walls at the same. temperature and a para- 
bolic distribution of heat sources in the gas. The geometry 
studied is shown in Figure 1. 
No Energy Source m the Go8 

The computer flow chart for this case is shown in Figure 
2. In the program the random number R must be selected 
each time it is used, as opposed to Ri, Rz, and R3 which 
are reassigned only at given points. 
As derived in the Appendix [Equation (A4)] when a 

bundle is emitted from wall 0 <1>", its wave length is 
determined from 

where R is a random number in the range 0 to 1, CAO is the 
emissivity, and ebAO the black emissive ower distribution 

is obtained for a given surface temperature. 

of the emitted bundle is shown in reference 4 to be 

of surface 0. By integration of (1) a re El tion 1 = Fo ( R )  

If the surface is assumed to emit diffusely, the direction 

cos ?) = VKl (2) 
The distance the bundle travels before absorption in the 

gas is given in the appendix by Equation (A9) as 
1 

I n R = - J  0 dl' (3) 

where T A  = DKA is the monochromatic gas optical thick- 
ness. If it is assumed that the gas is divided into l/& 
increments, each with an absorption coefficient KA,i, the 
increment i in which absorption occurs can be found by 
writing (3) as 

(4) 
z=1 

and carrying out the summation until the inequality is 
satisfied <2>. Since the absorption coefficient is tempera- 
ture dependent, solution of (4 )  requires a priori knowl- 
edge of the temperature distribution across the channel. 
This necessitates an iterative procedure. 

If the increment number i is greater than the number 
of increments available <3>, then the bundle must be ab- 
sorbed by black surface 1. If the bundle is absorbed in the 
gas, then the normal distance from surface 0 at which ab- 
sorption occurs is found <5>. The bundle is tallied as being 
absorbed in increment i <6>. Since the gas is at the sfeady 
state, a new bundle must be emitted from x. Its wave 

*The numbem in brackets < > conupond to those in Figure 2. 
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Fig. 1. Geometry for nongrey nonisothermal gas between infinite 

parallel black plates. 

length is determined from A = Fp,=(R) <7> as calculated 
from Equation (A5) in the appendix. The direction of 
isotropic emission from any point x in the gas is shown in 
reference 4 to be given by 

COS 11 = 1 - 2Rz ( 5 )  
This direction is examined to determine whether it is 

toward surface 0 or surface 1 <8>. A check is made to de- 
termine whether the bundle is reabsorbed in the same in- 
crement i <9>. If so, the new point of absorption x is 
found <lo, 11>, and the bundle is again tallied and re- 
emitted <6>, etc. If not, the increment I in which it is 
absorbed is calculated <12>, again by modifying Equation 
(3). A check is made of the increment number <13> to see 
whether the bundle reached the wall. If so it is tallied 
at that wall <14>. If not, the point of absorption x is cal- 
culated <11>, and the bundle is tallied <6> and re-emitted 
as before. The procedure is followed until absorption at a 
wall. Enough such paths are traced to give statistically 
meaningful results. 

A similar procedure is then followed by those bundles 
emitted from surface 1. 

The net energy transferred to surface 1 is 
(qo-l)..t = co so-1 - c1 s1-0 (6) 

where SA-B is defined as the number of bundles emitted 
at surface A per unit area that are absorbed at surface B. 
The term CA is the energy per bundle emitted from surface 
A and is defined by 

(7) CANA = s," EAA ebA,A dh 

4%) 

where NA is the total number of bundles emitted per unit 
area from A. For the case of black walls substitution of 
Equation (7) into Equation (6) gives 

1 
X - [ 2;': 1 G(z)=O- 

[2-(5)=] (8) 

The emissive power of a gas volume of width AX is ob- 
tained from the number .of bundles emitted in the gas 
volume: 

where SA-Az,i is the number of bundles absorbed and 
therefore re-emitted in the volume element i of width Ax 
that originated at surface A, and T P , ~  is the Planck mean 
optical thickness in increment i and is defined as \ b  

\ Y Vol. 10, No. 4 

The emissive power distribution in the gas is then 

eg,i - ebo 1 
X 

(11) { I - -  1 [ - SO-Az,i + ( -- sl;z,i) e",",' ] } 
47p.i AX NO 

Gar with Parabolic Source Distribution Between Plater 
at  Equal Temperatures 

A parabolic distribution of heat sources of the form 

(12) 
is assumed, where G is the heat generation rate per unit 
volume. The problem is to find the emissive power distri- 
bution in the gas. 

The emissive power is related to the number of emis- 
sions in the gas by 

where (Sg,Az) i is the total number of bundles emitted in a 
volume element AX around point i which originate in the 
gas owing to the gas heat sources. This includes original 
emissions in the gas element and re-emissions after absorp- 
tion of bundles originating in other gas elements. The last 
two terms give the energy absorbed from the walls directly 
and by re-emission from the gas. 

The energy per bundle originally emitted in the gas cp 
is defined as 

The flow chart for this case is also shown in Figure 2. 

G(x) = 4Gm.x x ( 1 -  x j  

4TP,ikeg,i = Cg(Sgdz)i + CO(S0-Az)i + Cl(S1-Az)i (13) 

where Np is the total number of bundles originally emitted 
in the gas owing to the heat sources. 

4 

1% ... 1, .IS I... I, .I LT" 

Fig. 2. Computer flow chart. 
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Fig. 30. Properties of hydrogen gas. Total 
absorption coefficient of hydrogen gas a t  P 

= l,OW atm. (from reference 6). 

For any variation of optical thickness 7P.i if the surface 
temperatures are equal the gas must be isothermal at the 
wall temperature, and one can reduce Equation (11) to 
the identity 

S O - A b i  s1-&,i 1 
4TP,i  & = - +-=- 

h70 N 1  eb 

Substituting this relation into Equation (13) one gets 
(cOsO-Az,i + clsl -Az . i )  

(15) 
i - - eg,i - eb 

4 N g  & 7P.i 

T o = T I  

The Monte Carlo program is essentially that described 
in the previous section except that bundles originate within 
the gas as points determined by the function x = Fs ( R )  , 
as derived in the appendix [Equation (Al l ) ] ,  rather 
than at the surfaces. 
Sample Problem 

The calculations were carried out for hydrogen in the 
temperature range of 5,000" to 12,000"K. The absorption 
coefficient as a function of temperature and wave length 
used in the problem is shown in Figure 3a. The mean ab- 
sorption coefficients calculated from this data and used in 
the comparison solutions are shown in Figure 3b. The 
data is from reference 6 and is based on analytical calcu- 
lations. The absorption coefficient was assumed zero out- 
side the range Am, < , A  < Amax. 

The Monte Carlo solution is compared with a diffusion 
solution with jump boundary conditions for this specific 
problem.* The diffusion solution follows Deissler (3) but 
extends his results to include the variation of absorption 
coefficient across .the channel. 

The diffusion solution uses the Rosseland mean absorp- 
tion coefficient KR. If the absorption coefficient is very 
small over parts of the spectrum, the value of KR is 

*Material has been de ited as document 7972 with the American 
~ m m t a t i o n  Institute E ~ u p l i c a t i o n  s-ce, Library of 
Washington 25, D. C.,'and may be obtained for $1.25 for photoprints 
or for 35-mm. rmcrofilm 

Page 564 A.1.Ch.E. 

ABSORPTION COEFFICIENTS 

- PLANCK MEAN, Zp, EQ. (0) "--- - ROSSELAND MEAN, E,, EQ. (813) 

g w 4- /' 
0 

w 3- 
L 
L 

0 
0 
z 

0 

1 
5000 7000 9000 Il.oO0 1&ooo 

TEMP, OK 

Fig. 3L. Properties of hydrogen gas. Comparison of mean absorption 
coefficients for data of Figure 30.. Wave length range 1.5 x 

< h < 2.0 x 10-4 cm. 

weighted excessively by this portion of the spectrum. Be- 
cause of this the problem must be solved in two parts. 
Over the spectrum range with appreciable absorption co- 
efficient the difFusion solution is used, and over the re- 
mainder the gas is considered transparent. 

The results for the example are also compared with 
the Monte Carlo temperature dependent solution based on 
the Planck mean absorption coefficient of the gas in each 
increment as defined by Equation (10) and with the 
Monte Carlo solution which uses the wave length depend- 
ent absorption coefficient evaluated at an average temper- 
ature. Limiting exact solutions for optically thick and 
transparent gases are also given.' 

RESULTS 

No Gar Heat Sources 
The net heat transferred between the heated infinite 

black plates enclosing hydrogen is shown in Figure 4. 
The temperature of plate 0 was taken as 9,500"K. and of 
plate 1 as 4,500"K. The results are shown for different 
values of plate spacing D. The gas was assumed trans- 
parent at wave lengths less than 0.15 x lo-' or greater 
than 2 x 10-4 cm. 

Comparison of the exact Monte Carlo solution to the 
wave length dependent, temperature independent absorp- 
tion coefficient .(A, T c )  solution shows a lower heat trans- 
fer rate for the exact solution. This is because the wave 
length dependent gas absorption coefficient is evaluated 
at 7,00O"K., the average of the wall temperatures. HOW- 
ever the larger slope of the curve of gas absorption d- 
cient with temperature (Figure 3b) near the higher wall 
temperature indicates that a higher mean gas tempera- 
ture should be used to evaluate .(A, T,) for this case. 

Also shown is the Monte Carlo solution with a tempera- 
ture dependent 'F'lanck mean absorption coefficient KP ( T ) 
which gives lower heat transfer than the exact solution 
because the mean absorption Coefficients are weighted 
according to the Plan& energy distribution based on the 
local gas temperature [Equation ( lo)] .  This gives most 
weight to the absorption coefficient in the wave lengths 
where the local Planck energy distribution is a maximum. 
The energy absorbed locally however will have a wave 
h g t h  distribution based on its source energy spec-. 
In the present case this gives an exaggerated absorption 

* See footnote in column 1. 
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SOLUTIONS 

0 EXACT MONTE CARLO: K = F L T )  

0 MONTE CARLO: K = F(T1 
USING PLANCK MEAN 

A MONTE CARLO: K = FIX, 7000' K) 
-- - MODIFIED DIFFUSION - CURVE FIT TO MONTE CARLO 

0 5 IO 15 20 
PLATE SPACING, D, CM 

Fig. 4. Heat transfer through hydrogen between black plates. No gas 
heat source. Plate temperatures To = 9,500°K., T i  = 4,5W°K. 

coefficient for calculating the ener absorbed from the 
hot wall and a consequently smaller gil eat transfer than the 
exact solution. 

The modified diffusion solution is in close agreement 
with the Monte Carlo solution with the Planck mean ab- 
sorption coefficient. This agreement might be expected, 
since both solutions are based on a temperature depend- 
ent mean absorption coefficient. The diffusion solution is 
in better agreement with the exact solution as the plate 
spacing is increased. The approximation of the tempera- 
ture dependence of the absorption coefficient as a para- 
bolic form and the neglect of variation of absorption co- 
efficient over a mean free path still introduce some error. 

The gas emissive power distributions for various plate 
spacings are shown in Figure 5. The local gas emissive 
power is dependent on the temperature surroundings 
viewed and the absorption coefficient. For the example 
shown elements near the hot wall attain equilibrium tem- 
peratures close to the hot wall temperature. Elements 
near the cold wall are less readily influenced by the hot 
wall, especially for large plate spacing, because the large 
absorption coefficient in the hotter portion of the gas 
masks the hot wall. This leads to the large emissive power 
gradient near the hot wall for cases with temperature 
dependent absorption coefficient. 

In Figure 5a the exact solutions for various plate spac- 
ings are shown. As 'the plate spacings get larger, the 
jump between the emissive powers of the wall and the gas 
at the wall become smaller and approach zero as the plate 
spacing becomes very large. As the plate spacing ap- 

PLATE SPACING, 
C M  

LIMIT-@ (LIMIT!NG DIFFUSION SOLUTION1 

----- 
K l M I T - 0  (LIMITING TRANSP 

SOLUTIONS 
EXACT MONTE CARLO 

- LEAST SOUARES FIT 

ARENT SOLUTION1 

I 
~~ 

THROUGH MONTE CARLO RESULTS 

I I I I I 
0 .2 .4 .6 .8 1.0 

POSITION BETWEEN PLATES. x 

Fig. 54. Emissive power distribution in hydrogen between parallel 
plates. No gas heat source. Plate temperatures To = 9,500°K., 

T i  = 4,500.K. Exact solutions, various spacings. 

SOLUTIONS 
EXACT MONTE CARLO.* = Foi. TI 
MODIFIED DIFFUSION 
MONTE CARLO .= FIT1 

MONTE CARLO I =  FIA, 7000O K )  

-_- 
USING PLANCK MEAN 

POSITION BETWEEN PiAiES, x 

Fig 5b. Emissive power distribution in hydro- 
gen between parallel plates, To = 9,500°K., 

T i  = 4,5W°K. Plate spacing 20 crn. 
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proaches zero, the emissive power becomes constant since 
any gas element views both walls equally well. The con- 
stant is not the average of the emissive powers of the 
walls as would be the case for a grey gas. The reason is 
that the wave length dependent absorption coefficient is 
lower for the wave lengths of energy leaving the hot wall 
and is comparatively large at the wave lengths of local 
gas emission, which leads in turn to an equilibrium tem- 
perature nearer that of the cold wall. 

Figure 5b compares the exact Monte Carlo solution 
with various approximate solutions at the larger plate 
spacing. The agreement was better at a small plate spac- 
ing, since the temperature range, and therefore the vari- 
ation in absorption coefficient with temperature, is less. 
The wave length dependent, temperature independent ab- 
sorption coefficient solution gives emissive power distri- 
butions with less slope at the hot wall than the exact 
solution, since there is no temperature effect on the ab- 
sorption coefficient. 

The temperature dependent Monte Carlo solution with 
a Planck mean absorption coefficient gives curves of shape 
similar to the exact solution but of higher values of gas 
temperature. This is again due to the erroneously high 
absorption of energy in each element because of the large 
mean absorption coefficient computed on the basis of the 
local gas temperature. This effect becomes smaller for 
optically thick gases. 

The slope near the walls for the modified diffusion solu- 
tion does not correspond to the exact solution because 
the effects of the wall are only included in the emissive 
power jump at the wall and not in the gas away from 
the wall. As the plate spacing becomes larger, this ap- 
proximation improves. At the cold wall however the re- 
sults are still poor because of the low absorption coeffi- 
cient there. 
Parabolic Heat Source in the Gas 

For a symmetrical distribution of heat sources between 
the black walls at equal temperatures the heat transferred 
to each wall is equal to one-half the total heat generated. 

The emissive power distribution in the gas is shown 
in Figure 6a for the exact solutions for various values of 
the plate spacing D. The limiting transparent solution is 
compared. The gas temperatures become higher at larger 
plate spacing because of the increasing difficulty of trans- 
ferring heat to the walls from positions near the center 
line. 

with the exact solution for a large plate spacing. 
In Figure 6b, the simplified solutions are compared 
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Fig. 60. Emissive power distribution in hydrogen 
between parallel black plates, parabolic heat 
source. Plate temperatures T, = To = TI  = 
7,000OK. G,,, = 0.145 kw./cc. Exact solu- 

tion, various plate spacings. 

The various aproximate Monte Carlo solutions give ex- 
cellent agreement to the exact solution for smaller plate 
spacings because of the small temperature variations in 
the enclosure. 

The diffusion solution gives better agreement with in- 
creasing plate spacing and higher temperatures, where the 
absorption coefficients are larger. In Fi re 7 the difFer- 
ence between the gas center line and w a r  emissive powers 
is plotted for the exact Monte Carlo solution. This is com- 
pared with the two limiting solutions, the diffusion solu- 
tion applicable for large plate spacing and the transparent 
approximation for small ate spacing. The exact solu- 
tion is seen to approach st e limiting solutions on a per- 
centage difference basis. 

CONCLUSIONS 

The results indicate that for gases with large optical 
thickness the &sion approximation modified for tem- 
perature dependent absorption coefficient is applicable. 
In the other extreme the transparent solutions are applic- 
able. It may be possible in certain cases to divide the 
energy spectrum so that different solutions are used in 
different regions. 

In general however the diffusion or transparent assump- 
tions or the use of temperature and/or wave length inde- 
pendent absorption coefficients can give very misleading 
results. In addition it is very difficult to predict the mag- 
nitude or sign of the error, since it will strongly depend 
on the properties of the particular gas. 

The Monte Carlo method is flexible enough to remove 
any or all of the above assumptions and can be modified 
to include other effects such as scattering, nongrey, and/ 
or nondiffuse walls, etc. These would be extremely diffi- 
cult to include in other methods. 

;Monte Carlo is relatively easy to program as compared 
with setting up the integral equations, and its chief draw- 
back is the large use of computer time in complex cases.1 

The present results for the longest running cases of 
large plate spacing and absorption coefficient varying 
with wave length and temperature consumed on the 
order of % hr. of computer time on the IBM-7094 com- 
puter. Convergence was checked by the usual procedure 
of reducing increment size and increasing the number of 

SOLUTIONS 

- EXACT MONTE CARLO, I = F a .  TI 
-- MODIFIED DIFFUSION 
--- MONTE CARLO. I = FIT1 

MONTE CARLO. r = Flk, 7000O Kl 
USING PLANCK MEAN 

--_- 

b 

0 . I  .2 .3 .4 .5 
POSITION BETWEEN PLATES, x 

Fig 66. Emissive power distribution in hydro- 
gen between parallel black plates, parabolic 
heat source. Plate temperatures T, = To 
= T1 = 7,MX)OK.. G,,, = 0.145 kw./cc. 

bundles and iterations until no changes were observed. 
Three to four iterations were usually required. 

The running time was of course strongly dependent on 
the particular problem, initial guesses, and accuracy re- 
quired. How-ever since this may often be the only feasible 
way of obtaining solutions in such cases, this use of com- 
puter time is generally justified. 
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NOTATION 

C1 

C2 

= constant in Planck energy distribution, 5.9529 x 

= constant in Planck energy distribution, 1.4387 
(kw.) (sq.cm.) 

(cm.) ( O K . )  

SOLUTIONS 

E X A C T  MONTE C A R L O  --- MODlF iED DIFFUSION 

--- T R A N S P A R E N T  APPROXIMATION 

P 

PLATE SPACING, cm 

Fig. 7. Comparison of approximations far large and small plate 
spacing, parabolic source case. Plate temperatures T, = To = 

Ti  = 7,0W°K., Gm, = 0.145 kw./cc. 
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c = energy per bundle, kw. 
D = distance between infinite parallel plates, cm. 
e = emissive power, kw./sq.cm.; J; e h d h  

ebA, egh = Planck black body emission distribution; 
2mc1 

G =  
i =  
l =  

N =  

4 =  
R =  
s =  
T =  
* =  

[exp (+j 
heat generation rate per unit volume, kw./cc. 
increment index 
bundle path length to point of absorption nondi- 
mensionalized by D 
total number of bundles originally emitted per 
unit area 
energy per unit area, kw./sq.cm. 
randomly chosen number in range from 0 to' 1 
number of bundles per unit area 
temperatwe, O K .  

normal distance from surface 0, nondimension- 
alized by D 

Greek Letten 
c = emissivity 
I )  
K 

A = wave length, cm. 
u = Stefan-Boltzmann constant, 5.670 X kw./ 

(sq.cm.) ( 
T = optical thickness, KD 
TP 
TR 

Subscripts 
A = surface 
A - Ax = originally emitted at  A, absorbed in Ax 
b 
g = gas 
i = gas increment number 
t = total 
w = of the wall 
x = at point x 
Ax = gas increment 
A = wave length dependent 
0 = of surface 0 
0 - 1 = emitted at 0, absorbed at 1 
1 = of surface 1 
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= Planck mean optical thickness [Equation ( 10) ] 
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= black: wall emissivity of 1 

= value integrated over wave length range M 
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APPENDIX 

Derivation of Monte Carlo Relotions 
Determination of wave length of bundle emitted from a sur- 

face The total energy per unit area emitted from surface A is 

and the frequency distribution of energy in a wave length 
band dh is 

(-42) 
eL4ehb.A dh 

dfA(h)  = 4- eL4eAb.A dh 

Transforming to a uniform density distribution by means of 
the cumulative distribution function 

one gets 

If R is taken as a random number in the range of 0 to 1, then 
(A4) can be solved for the wave length of emission 1. 

Determination of waoe length of bundle emitted from a gas 
For emission from a gas a similar procedure yields 

Determination of bundle path length to absorption The 
number of bundles dN that will be absorbed in a nondimen- 
sional distance dl divided by the number of bundle originally 
emitted is 

dfn (A61 
dN - TAN dl 
-=-= 
No No 

Solving for N/No and substituting above one obtains 

dfn = --A exp [ - J : n d l " ]  dl' = 

d [ exp (- f' TA dl" ) ] 
This can be transformed to the uniform distribution 

R = f d f n = l - e x p [ - X ~ ~ d l ' ]  (A8)  

Since R is evenly distributed between 0 and 1, it can be re- 
placed by 1 - R to give 

In R = - s  TK dl' (A9) 

Point of emission of bundle in gas for gas heat source case 
If an energy distribution of the,form given by Equation ( 12) 
is assumed, the cumulative distribution is 

I 

0 

f G ( d ) d x t  

f G(X')dd 

R =  = 2$ [(3/2) --XI (A10) 

It can be shown by Rolle's theorem and its corollaries (7)  
that this equation, which must be solved for x in terms of R, 
has one and only one real root in the range of interest; this 
root is 

x = Fs(R) = - + cos ( r f 3 4 n )  - ( A l l )  
2 

where r = COS-1 (1 - 2R) (-412) 
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